Generalized Multiphoton Quantum Interference
- Author(s)
- Max Tillmann, Si-Hui Tan, Sarah E. Stoeckl, Barry C. Sanders, Hubert de Guise, Rene Heilmann, Stefan Nolte, Alexander Szameit, Philip Walther
- Abstract
Nonclassical interference of photons lies at the heart of optical quantum information processing. Here, we exploit tunable distinguishability to reveal the full spectrum of multiphoton nonclassical interference. We investigate this in theory and experiment by controlling the delay times of three photons injected into an integrated interferometric network. We derive the entire coincidence landscape and identify transition matrix immanants as ideally suited functions to describe the generalized case of input photons with arbitrary distinguishability. We introduce a compact description by utilizing a natural basis that decouples the input state from the interferometric network, thereby providing a useful tool for even larger photon numbers.
- Organisation(s)
- Quantum Optics, Quantum Nanophysics and Quantum Information
- External organisation(s)
- Singapore University of Technology & Design, University of Calgary, Canadian Institute for Advanced Research, Lakehead University, Friedrich-Schiller-Universität Jena
- Journal
- Physical Review X
- Volume
- 5
- No. of pages
- 23
- ISSN
- 2160-3308
- DOI
- https://doi.org/10.1103/PhysRevX.5.041015
- Publication date
- 10-2015
- Peer reviewed
- Yes
- Austrian Fields of Science 2012
- 103026 Quantum optics
- Keywords
- Portal url
- https://ucrisportal.univie.ac.at/en/publications/af0311ca-f7b5-43fa-9f21-5acec4627739