The Cauchy Problem on a Characteristic Cone for the Einstein Equations in Arbitrary Dimensions

Author(s)
Yvonne Choquet-Bruhat, Piotr T. Chrusciel, José M. Martin-Garcia
Abstract

We derive explicit formulae for a set of constraints for the Einstein equations on a null hypersurface, in arbitrary space-time dimensions n + 1 a parts per thousand yen 3. We solve these constraints and show that they provide necessary and sufficient conditions so that a spacetime solution of the Cauchy problem on a characteristic cone for the hyperbolic system of the reduced Einstein equations in wave-map gauge also satisfies the full Einstein equations. We prove a geometric uniqueness theorem for this Cauchy problem in the vacuum case.

Organisation(s)
Gravitational Physics
External organisation(s)
Université de recherche Paris Sciences et Lettres, Académie des Sciences
Journal
Annales Henri Poincare
Volume
12
Pages
419-482
No. of pages
64
ISSN
1424-0637
DOI
https://doi.org/10.1007/s00023-011-0076-5
Publication date
2011
Peer reviewed
Yes
Austrian Fields of Science 2012
103036 Theoretical physics, 103028 Theory of relativity, 103019 Mathematical physics
Portal url
https://ucrisportal.univie.ac.at/en/publications/ca765424-7663-4640-a1d4-202ef4e6696a