Existence of singularities in two-Kerr black holes

Author(s)
Piotr T. Chrusciel, Michal Eckstein, Luc Nguyen, Sebastian J. Szybka
Abstract

We show that the angular momentum—area inequality 8π|J| ≤ A for weakly stable minimal surfaces would apply to I+-regular many-Kerr solutions, if any existed. Hence, we remove the undesirable hypothesis in the Hennig–Neugebauer proof of non-existence of well-behaved two-component solutions.

Organisation(s)
Gravitational Physics
External organisation(s)
Jagiellonian University in Krakow, Princeton University
Journal
Classical and Quantum Gravity
Volume
28
No. of pages
16
ISSN
0264-9381
DOI
https://doi.org/10.1088/0264-9381/28/24/245017
Publication date
2011
Peer reviewed
Yes
Austrian Fields of Science 2012
1030 Physics, Astronomy
Portal url
https://ucrisportal.univie.ac.at/en/publications/e7645966-09c2-48ae-8d5e-ee61e29c60db